Confetti Specification

Table of Contents

Introduction
Conformance
Lexical Structure
Forbidden Characters
White Space
Comments
Line Terminators
Reserved Punctuators
Directive
Argument
Escaped Characters
Line Continuation
Bidirectional Control Characters
Lexical Grammar
Language Extensions
Parsers
Normative References
Annex A: Comment Syntax Extension

Annex B: Expression Arguments Extension

A OO Oy 1 U1 U1 U1 U1 R W W W W NN DNDNDN DN e

Annex C: Punctuator Arguments Extension

Introduction

This clause is informative.

Confetti is a configuration language intended for human-editable configuration files. It is
minimalistic, untyped, and opinionated.

This specification defines the core language for the Confetti, but does not assign semantic meaning
to it. Assigning semantic meaning is the responsibility of the user.

Confetti is designed to be minimal and extensible. Similar to how various flavors of Markdown
exist, implementations can introduce custom Confetti extensions by extending the grammar.
Official extensions can be found in the annex of this specification. These extensions provide a
syntactic framework for extending Confetti in a way compatible with its grammar.

The Confetti grammar has been designed to allow each directive to be processed individually; that
is, an implementation may process all arguments of a single directive before continuing to the next
directive or subdirectives. This design allows for implementations that let the user decide if

processing should continue based on their semantic interpretation of the directive.
The complete grammar is available in the back matter of this specification.

End of informative text.

Conformance

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119. However, for readability, these words do not appear in all uppercase letters
in this specification.

All of the text of this specification is normative except examples and sections explicitly marked as
informative.

Lexical Structure

Confetti source text consists of zero or more Unicode scalar values. For compatibility with source
code editing tools that add end-of-file markers, if the last character of the source text is a Control-Z
character (U+001A), implementations may delete this character.

The Confetti language consists of zero or more directives. A directive consists of one or more
arguments and optional subdirectives.

Forbidden Characters

Forbidden characters are Unicode scalar values with general category Control, Surrogate, and
Unassigned. Forbidden characters must not appear in the source text.

White Space

White space characters are those Unicode characters with the Whitespace property, including line
terminators.

Comments

Comments must begin with a # and continue until a line terminator or EOF is found.
All Unicode characters should be allowed in comments excluding forbidden characters.

Example: A simple comment.

This is a comment.

https://datatracker.ietf.org/doc/html/rfc2119

Line Terminators

Line terminators are defined by the Unicode standard and are listed in the following table.

For compatibility with Windows operating systems, implementations may treat the sequence
Carriage Return (U+000D) followed by Line Feed (U+000A) as a single, indivisible new line character
sequence.

Name Description

LF Line Feed (U+000A)

VT Vertical Tab (U+000B)

FF Form Feed (U+000C)

CR Carriage Return (U+000D)
NEL Next Line (U+0085)

LS Line Separator (U+2028)

PS Paragraph Separator (U+2029)

Reserved Punctuators

The following table lists all reserved punctuators.

Name Description

Quotation Mark (U+0022)

Number Sign (U+0023)

, Semicolon (U+003B)

{ Left Curly Bracket (U+007B)
} Right Curly Bracket (U+007D)
Directive

A directive shall consist of a sequence of one or more arguments and optional subdirectives.
Directives shall be terminated by either a character from the line terminator character set, a
semicolon (U+003B) character, or the beginning of a subdirective.

Subdirectives are a sequence of zero or more directives. Subdirectives begin with a Left Curly
Bracket (U+007B) and terminate with a Right Curly Bracket (U+007D).

Argument

A directive “argument” shall be a sequence of one or more characters from the argument character
set. The argument character set shall consist of any Unicode scalar value excluding characters from
the white space, line terminator, reserved punctuator, and forbidden character sets.

The value of an argument shall be the argument’s lexeme with escaped characters processed.

Quoted Argument
A quoted argument is a directive argument enclosed by Quotation Mark (U+0022) characters.

Single quoted arguments must begin with a leading punctuator Quotation Mark (U+0022), followed
by zero or more single quoted argument characters, and terminated by the trailing punctuator
Quotation Mark (U+0022). The single quoted argument character set is the union of the argument
character set and white space character set.

Triple quoted arguments must begin with three consecutive leading punctuator Quotation Mark
(U+0022), followed by zero or more triple quoted argument characters, and terminated by the
trailing punctuator Quotation Mark (U+0022). The triple quoted argument character set is the union
of the argument character set, the white space character set, and the line terminator character set.

The value of a quoted argument shall be the argument’s lexeme with escaped characters processed,
leading and trailing Quotation Mark (U+0022) characters removed, and line continuations
processed.

Escaped Characters

When a Reverse Solidus (U+005C) appears in an argument, a single quoted argument, or a tripled
quoted argument, it must be succeeded by a Unicode character 'C'. Unicode character 'C' is any
Unicode scalar value except white space, line terminators, and forbidden characters.

The Reverse Solidus (U+005C) and character 'C' are together labeled as an escaped character. An
escaped character is interpreted as if the character 'C' replaces the reverse solidus and 'C' character.

The escaped character shall not be interpreted as a reserved punctuator in any context.

Line Continuation

Within the Quotation Marks (U+0022) of a single quoted argument, when a Reverse Solidus
(U+005C) immediately precedes a line terminator, the implementation shall delete the reverse
solidus and line terminator and continue processing single quoted argument characters.

Example: Line continuation in a quoted argument.

message "Hello, \ @
World!"

@ Directive with arguments 'message’ and 'Hello, World!'

When the last argument of a directive is a Reverse Solidus (U+005C) succeeded by a line terminator,
the implementation shall delete the reverse solidus and line terminator and continue processing
arguments for the directive.

Example: Multi-line directive.

probe-device ethd \ @
eth1

@ Directive with arguments "probe-device' and 'eth0' and 'eth1’

Bidirectional Control Characters

Implementations may reject Confetti source text with Unicode bidirectional formatting characters.

Lexical Grammar

The complete EBNF grammar:

directives = { <directive> | <newline-char> }
directive = <arquments> [<subdirectives> | <directive-term>]
subdirectives = { <newline-char> } ‘{‘ <directives> ‘}'
directive-term = <newline-char> | °;°
arguments = <argument> { <arqument> }
argument = <simple-argument> | <quoted-argument>
simple-arqument = <argument-char> { <argument-char> }
quoted-argument = <single-quoted> | <triple-quoted>

\n\

single-quoted = { <argument-char> | <space-char> }
triple-quoted = ‘""" { <argument-char> | <space-char> | <newline-char> }
newline-char = ? line terminator character ?

argument-char = 7 arqument character ?

space-char = ? white space character ?

AN

nnmnny

Language Extensions

Implementations may extend this specification, provided that any additions are -clearly
documented.

Parsers

An implementation may set limits on the size of texts that it accepts. An implementation may set
limits on the maximum depth of subdirectives. An implementation may set limits on the length of
arguments, quoted and unquoted.

Normative References

This specification defines grammar rules using EBNF as defined in ISO/IEC 14977:1996.

This specification is written against the Unicode Standard version 16.0. It is possible newer

standards may necessitate a revision of this specification.

Annex A: Comment Syntax Extension

Implementations may include a comment syntax based on C language conventions where multi-
line comments are enclosed in /* and */ and single-line comments begin with //.

Single-line comments must behave identically to Confetti # comments.
Valid multi-line comments must begin with a /* and continue until a */ is found.

The following table extends the reserved punctuator table.

Name Description

/7 Two Solidus (U+002F U+002F)

/* Solidus Asterisk (U+002F U+002A)
*/ Asterisk Solidus (U+002A U+002F)

Annex B: Expression Arguments Extension

Implementations may include expression arguments. An expression argument is an “expression”
enclosed in parentheses. The interpretation and evaluation of an expression argument is
implementation defined.

This extension requires Left Parenthesis (U+0028) and Right Parenthesis (U+0029) to be considered
reserved punctuators. If an implementation permits parenthesis in the expression argument, then
they must be balanced.

The production rules shall be amended as follows:

arqument ::= <simple-argument> | <quoted-argument> | <expression-argument>
expression-argument ::= ‘(' ? implementation defined ?)"

Annex C: Punctuator Arguments Extension

Implementations may define their own punctuator arguments.

Punctuator arguments shall consist of one or more Unicode scalar values that, under standard
interpretation, are valid characters in an argument.

Punctuator arguments must be self-delimiting; that is, they are treated as a single argument.
Adjacent characters must not contribute to the punctuator argument, even if they would under
standard interpretation.

The production rules shall be amended as follows:

<simple-argument> | <quoted-argument> | <punctuator-argument>
? implementation defined ?

argument ::
punctuator-arqument ::

	Confetti Specification
	Table of Contents
	Introduction
	Conformance
	Lexical Structure
	Forbidden Characters
	White Space
	Comments
	Line Terminators
	Reserved Punctuators
	Directive
	Argument
	Escaped Characters
	Line Continuation
	Bidirectional Control Characters

	Lexical Grammar
	Language Extensions
	Parsers
	Normative References
	Annex A: Comment Syntax Extension
	Annex B: Expression Arguments Extension
	Annex C: Punctuator Arguments Extension

